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Abstract—This paper considers a noncooperative game of quantity competition among firms
in an oligopoly market under general demand and cost functions. Each firm’s optimal response
to the strategies of other firms is assessed by the magnitude and sign of its conjectural varia-
tion, expressing the firm’s expectation regarding the counterparty’s supply quantity change in
response to the firm’s unit change in its supply quantity. A game of n firms with the sum of
conjectural variations (SCV) regarding all counterparties as the generalized response character-
istic is studied. The existence of a bifurcation of the players’ response is revealed; a bifurcation
is a strategy profile of the game in which both positive and negative responses are possible
with an infinite-magnitude SCV value. Methods are developed for calculating the SCV value
under different types of inverse demand functions (linear and power) and cost functions (linear,
power, and quadratic), and the impact of these characteristics of firms on the bifurcation state
is comparatively analyzed.
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1. INTRODUCTION

In an oligopoly game, players (firms) make assumptions about the strategies of other players
(the environment) underlying their optimal response to these strategies. In the case of quantity
competition, the assumptions of firms are formalized by conjectural variations [1]. This case is
often considered by researchers [2] due to the preferability of quantity competition: it results in a
smaller output, higher prices, and higher profits than price competition [3]. A conjectural variation
(hereinafter, meaning a quantity conjectural variation) is the firm’s expectation regarding the
counterparty’s supply quantity change in response to the firm’s unit change in its supply quantity.
In oligopoly theory, it is conventional to consider the optimal (consistent [4]) conjectural variation
calculated from the player’s necessary condition of optimality, i.e., the one corresponding to the
player’s best response. In other words, the player’s strategy choice model (utility function) being
unknown, the awareness of the conjectural variation allows predicting the player’s behavior.

In addition, when assessing the conjectural variations, a player can assume that the counterparty
is also assessing him, i.e., suppose the former’s optimal behavior. In this case, the counterparty
is called a Stackelberg leader whereas the given player a follower. However, the counterparty may
argue by analogy, treating the given player as a Stackelberg leader and calculating the conjectural
variation from the leader’s optimal response (thereby becoming a second-level leader for the given
player). This sequence of players’ reasoning is called strategic reflexion. Thus, an analysis of
conjectural variations inevitably leads to the problem of multilevel leadership [5]. Consequently,
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712 GERASKIN

the vector of the conjectural variations of all players is a complex characteristic of the strategy
profile of the game with these mental profiles of the firms, as conjectural variations are functions
of the role of each player in the hierarchy of multilevel leadership.

In an oligopoly game of n > 2 players, the firm’s behavior is determined by the sum of its
conjectural variations (SCV) regarding all environment players. If the player’s SCV is negative,
then its optimal strategy is to increase the supply quantity, and vice versa. Therefore, in the
n-player game, the awareness of all components of the vector of conjectural variations of all players
is not necessary for predicting the game outcome: it suffices to know the components of the SCV
vector of all players. No doubt, the awareness of the players’ utility functions is required to
determine the SCV vector; nevertheless, given available limits for typical utility functions and the
nature of SCV changes, one receives an information base for predicting game outcome limits.

Typical utility functions are defined by a set of demand functions and cost functions [5–19]. In
the studies of oligopoly, the most common inverse demand functions are the linear [5, 6, 9–15] and
power [5, 16–19] ones. The set of functions describing the costs of oligopolists is somewhat wider:
the linear function [10, 12–14, 16, 18], the power function [6, 17], and the quadratic function [5, 7–9,
11, 15, 19]. Obviously, in the vast majority of publications, researchers consider the linear models
of demand and costs: in this case, it is easy to calculate conjectural variations from the best
response functions (reaction functions) in explicit form. The power cost function can be either
convex or concave for different degrees; a concave cost function corresponds to the positive scale
effect whereas a convex cost function to the negative scale effect. The quadratic cost function is
used only to describe the negative scale effect in the convex case: otherwise, the transition to a
decreasing dependence of costs on output may occur, which disagrees with the economic realities.

Thus, when assessing the behavior of firms in an oligopoly game, a topical problem is to analyze
the nature and limits of SCV changes due to the changes in the profile of their reflexive beliefs
under different utility functions of the players.

2. FORMULATION OF THE OLIGOPOLY GAME MODEL

Consider quantity mono-product competition in an oligopoly of n > 2 firms. Let all firms have
a common inverse demand function P (Q) decreasing in the total supply quantity Q, and let the
cost function Ci(Qi) of each firm i be nondecreasing in its supply quantity Qi.

We suppose the possibility of reflexion for each player (firm), given by a reflexion rank r. The
player’s reflexive behavior consists in putting forward some beliefs about the strategies of its envi-
ronment (the other players), which leads to the appearance of phantom players in the game [20]. In
this case, reflexion rank is a numerical characteristic of such beliefs, and the sequence of reflexion
ranks defines the following hierarchy of phantom players:

—At rank r = 1, the player is aware that the environment does not know its strategy, i.e., the
other players are followers and this player becomes a first-level Stackelberg leader.

—At rank r = 2, according to the player’s information, it is surrounded by first-level Stackelberg
leaders; hence, this player becomes a second-level Stackelberg leader.

—At an arbitrary rank r, the player knows that the environment players are (r − 1)th-level
Stackelberg leaders; therefore, this player becomes an rth-level Stackelberg leader.

Thus, the real game of firms in an oligopoly market will be treated below as an information
game of phantom players, each having different leadership levels depending on the degree of its
awareness. Such a situation is commonly called multilevel leadership (a multiple leader–follower
game) [5], and leadership levels are given by the reflexion rank r.

A multiple leader–follower game is a tuple of the form

Γ = 〈N, {Qi, i ∈ N}, {Πi, i ∈ N}, {ri, i ∈ N}〉,
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QUANTITY CONJECTURAL VARIATIONS IN OLIGOPOLY GAMES 713

where N = {1, . . . , n} denotes the set of players, {Qi, i ∈ N} is their action vector (the strategy
profile of the game), {Πi, i ∈ N} is the vector of their utility functions, and {ri, i ∈ N} is the vector
of their ranks.

The utility function of player i has the form

Πi(Q,Qi) = P (Q)Qi − Ci(Qi).

Differentiating the utility functions of the players, we define the system of necessary conditions for
Nash equilibrium:

P (Q) + (1 + Sr
i )QiP

/
Q − C

/
iQi

= 0, i ∈ N, (1)

where Sr
i =

∑
j∈N\iQ

/
j(r)Qi

is the sum of the conjectural variations of player i at a reflexion rank r

(each component Q
r/
jQi

is the conjectural variation of player i, i.e., the expected change in the

quantity of player j in response to the unit quantity increase of player i); the value Q
r/
jQi

= ρrij is
calculated by differentiating equation (1) for player j, which confirms its optimality.

An equilibrium in this game, i.e., a solution of system (1) that maximizes the utility functions
Πi(Q,Qi) of the players, exists under the condition established by W. Novshek [21]:

P
/
Q + P

//
QQQ < 0.

This condition depends on the type of demand functions: for linear and exponential demand
functions, it is satisfied; for the power demand function, it fails, and the existence of an equilibrium

requires the nondecreasing property of the cost functions, C
/
iQi

� 0.

The solution of system (1) can be found if the SCV values Sr
i are known for all players. They

are calculated using the following recurrent formula [6] at an arbitrary reflexion rank:

Sr
i =

⎛⎜⎜⎜⎜⎝ 1∑
j∈N\i

1

uj − Sr−1
j + 1

− 1

⎞⎟⎟⎟⎟⎠
−1

. (2)

Due to (2), the player’s SCV depends on two characteristics of the environment players:

—the mental types of players, defined by their SCV values Sr−1
j at the previous reflexion rank;

—the technological types related to the type of the cost functions of the environment players,

defined by the parameters uj ; for some types of demand functions (if P
//
QQQi

	= 0, see below), this
parameter also describes the player’s mental type.

Note that formula (2) is presented for the conjectural variations independent of the actions of

players, i.e., under the condition ρ
/
ijQi

= 0; the more general case ρ
/
ijQi

	= 0 was described in [6].
It was also demonstrated therein that conjectural variations weakly depend on the supply quantities

of players, i.e., ρ
/
ijQi

≈ 0. Below, we will justify this premise for the demand and cost functions under
considerations, showing that the SCV values and types of the demand and cost functions of the
environment players have the greatest impact on the player’s SCV value.

Proposition 1. The parameter ui in (2) is given by

ui = −1 +
P

/
Qi

+ (1 + Sr−1
i )QiP

//
QQi

− C
//
iQiQi

| P /
Q |

. (2a)
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714 GERASKIN

We will call ui the nonlinearity coefficient since it characterizes the impact of the nonlinear-
ity of the demand and cost functions on the type of equation (1) of player i : for ui = −2, the
corresponding equation of system (1) is linear.

Thus, according to (1), the computation of the game equilibrium directly depends on the SCV
value. In turn, this value is predetermined by the peculiarities of the functions P (Q) and Ci(Qi);
see formula (2). Therefore, we will study possible SCV values under different combinations of these
functions.

3. RESULTS

3.1. Methods for Calculating Conjectural Variations

Whenever the player’s number i does not matter, it will be omitted below, and the player’s
action will be denoted by q = Qi∀i ∈ N. Consider the inverse demand functions

P1(Q) = a− bQ, a > 0, b > 0, a� b, (3a)

P2(Q) = AQα, A > 0, α < 0, | α |< 1, (3b)

and the cost functions

C1(q) = B0 +B1q, B0 � 0, B1 > 0, (4a)

C2(q) = B0 +B1q
β, B0 � 0, B1 > 0, β ∈ (0, 2), (4b)

C3(q) = B0 +B1q +
B2

2
q2, B0 � 0, B1, B2 > 0, (4c)

where a, b,A, and α are the constant coefficients of the demand functions and B0, B1, B2, and β
are the constant coefficients of the cost functions.

Here, we adopt the notations of function types: Pk(Q), k = 1, 2, is the demand function of type k
(k = 1 corresponds to the linear function and k = 2 to the power function); Cm(q), m = 1, 2, 3, is
the cost function of type m (m = 1 corresponds to the linear function, m = 2 to the power function,
and m = 3 to the quadratic function).

Using formula (2), we derive expressions for P
/
Q, P

/
q , P

//
Qq, and C

//
qq in the case of the functions (3)

and (4):

P
/
1Q

= P
/
1q = −b, P

//
1Qq

= 0, (5a)

P
/
2Q

= P
/
2q = AαQα−1, P

//
2Qq

= Aα(α− 1)Qα−2, (5b)

C
//
1qq = 0, C

//
2qq = B1β(β − 1)qβ−2, C

//
3qq = B2. (5c)

As a result, the parameters ukm, k = 1, 2, m = 1, 2, 3, of the functions (3) and (4) are given by

u11 = −2, u21 = −2 + (1 + Sr−1)(1− α)
q

Q
, (6a)

u12 = −2− B1

b
β(β − 1)qβ−2,

u22 = −2 + (1 + Sr−1)(1− α)
q

Q
− B1

A | α | Qα−1
β(β − 1)qβ−2,

(6b)

u13 = −2− B2

b
, u23 = −2 + (1 + Sr−1)(1 − α)

q

Q
− B2

A | α | Qα−1
. (6c)

Note that the parameter B1 in (6) corresponds only to the case of the power function.
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3.2. Comparative Analysis of Conjectural Variations

With the notation sri =
∑

j∈N\i
1

uj−Sr−1
j +1

, formula (2) is simplified to

Sr
i =

(
1

sri
− 1

)−1

, (7)

where sri expresses the aggregate of the cost functions and SCV values of the environment of player i,
i.e., a generalized characteristic of the technological and mental types of the other players.

Due to formula (7), the function Sr
i (uj , S

r−1
j ) suffers from a discontinuity of the second kind

(Fig. 1) under the condition

sri =
∑

j∈N\i

1

uj − Sr−1
j + 1

= 1; (7a)

moreover, it takes infinitely large positive and negative values as sri → 1− 0 and sri → 1 + 0, respec-
tively. The function sri (uj , S

r−1
j ) has a discontinuity of the second kind for Sr−1

j = uj + 1∀j ∈ N\i,
which does not cause a discontinuity of the function Sr

i (uj , S
r−1
j ).

The discontinuity of the second kind of the function Sr
i (uj , S

r−1
j ) means that at the point of

discontinuity (u0j , S
0,r−1
j ), j ∈ N\i, player i at a reflexion rank r can simultaneously have two SCV

values (+∞ and −∞). Let us consider the sequential reflexion of the players regarding each other’s
behavior as a dynamic process on the numerical sequence of ranks r = 1, 2, . . . . Then, by analogy
with the solutions of some differential equations, we can say that there is a bifurcation of the
player’s beliefs. In this case, the bifurcation state of the beliefs of player i is a combination of the

0

0

1

–1

Si
r

Si
r (σ0) Si

r (σ00) Si
r

Qi
*

si
r

Fig. 1. The SCV value of player i depending on the aggregate of the cost functions and SCV values of the
environment (top) and the equilibrium action of player i depending on SCV value (bottom).
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technological types of the environment players, defined by their cost functions, and the mental types
of the environment players, expressed by their leadership levels (numerically defined in the SCV
form), under which player i can simultaneously expect infinitely large, both positive and negative,
reactions (SCV values) of the environment.

Function (7) (see the upper part of Fig. 1) allows estimating the following intervals of SCV
changes:

Sr
i =

⎧⎪⎨⎪⎩
∈ [−1, 0) if sri � 0

∈ (0,∞) if 0 < sri < 1

∈ (−∞,−1) if sri < −1.

(7b)

Hence, by characterizing the dependence of the aggregate sri on the environment’s nonlinearity
coefficients uj , which depend on the types of the demand and cost functions and are low-sensitive
to the supply quantities, and on the environment’s SCV value Sr−1

j , which depends on the latter’s
mental type, we can estimate the impact of these parameters on the player’s SCV value.

To qualitatively analyze in comparative terms the impact of the types of the functions Pk(Q)
and Cm(q) and study the bifurcation phenomenon, we consider the case of identical players. Assume
that for all environment players, the nonlinearity coefficients and SCV values are the same: uj = u
∀j ∈ N , Sr−1

j = σ ∀j ∈ N. In this case,

Sr
i =

n− 1

u+ 2− σ − n
, sri =

n− 1

u− σ + 1
. (8)

Formulas (7a) and (8) lead to the following result.

Proposition 2. If uj = u∀j ∈ N and Sr−1
j = σ ∀j ∈ N, then the SCV function Sr

i (u, σ) has the
following properties:

i) a discontinuity of the second kind at σ = σ0 = u+ 2− n (except for the case of the linear
demand and cost functions) and

lim
σ→(u+2−n)−0

Sr
i = ∞, lim

σ→(u+2−n)+0
Sr
i = −∞; (8a)

ii) values belonging to the intervals

Sr
i

{∈ (0,∞) if σ ∈ (−∞, σ0)

∈ (−∞, 0) if σ ∈ (σ0,∞)
(8b)

(except for the case of the linear demand and cost functions, in which Sr
i ∈ [−1, 0)).

A clear illustration of a bifurcation follows from the explicit-form solution of the system of
equilibrium equations (1), known for the case of the linear demand and cost functions. However,
in this case, infinite values of conjectural variations do not arise (they are bounded by the range
(−1, 0]). For power cost functions, an explicit-form solution does not exist [6], so we consider the
case of the linear demand function and the quadratic cost functions.

Proposition 3. In the case of the linear demand function and the quadratic cost functions, the
general solution of game (1) has the form

Q∗
i =

Di

[
n∏

j=1\i

(
γrj −1

)
+

n∑
j=1\i

n∏
μ=1\j,i

(
γrμ−1

)]
−

n∑
j=1\i

[
Dj

n∏
μ=1\i,j

(
γrμ−1

)]
n∏

j=1

(
γrj − 1

)
+

n∑
j=1

n∏
μ=1\j

(
γrμ − 1

) ; (9)
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in the particular case n = 3, the formula reduces to

Q∗
i =

Di

(
3∏

j=1\i
γrj − 1

)
−

3∑
j=1\i

3∏
μ=1\i

Djγ
r
μ +

3∑
j=1\i

Dj

γr1γ
r
2γ

r
3 − γr1 − γr2 − γr3 + 2

; (9a)

in the particular case n = 3 with the identical types of the players, D = Di ∀i ∈ N, the formula
becomes

Q∗
i = D

3∏
j=1\i

γrj −
3∑

j=1\i
γrj + 1

γr1γ
r
2γ

r
3 − γr1 − γr2 − γr3 + 2

, (9b)

where

Di =
a−B1i

b
, γi = 2 + Sr

i +
B2i

b
,

and the symbol “*” indicates the game equilibrium.

Under a belief bifurcation, two cases are simultaneously possible. They will be described based
on (9b) for the identical (same-type) environment players, see the corresponding condition in Propo-
sition 2. Then, considering (6c), we have γj = γ = −uj + Sr−1

j = −u+ σ, j = 2, 3, and γ < 0 for

σ = σ0 since B2 > 0.

The first case Sr
i → ∞ means that for the environment players, the optimal strategy is infinite

growth of the supply quantity, limited by the parameters of the demand function P (Q) and the
technological capabilities of the firms. (Recall that conjectural variations are considered as strate-
gies.) In this case, if the environment’s SCV values Sr

j , j = N\i, are finite numbers, then by (9b)

the player’s optimal response vanishes on the right, i.e., Qr∗
i → 0 + 0. In other words, the player

seeks to reduce the supply quantity to zero.

The second case Sr
i → −∞ implies an infinite reduction in the supply quantity by the environ-

ment players, although they can actually reduce the supply only to zero. Due to (9b), the player’s
optimal response vanishes on the left, i.e., Qr∗

i → 0− 0. This can be interpreted as the player’s
largest acceptable response to the negative value of the total supply quantity predicted by this
player based on Sr

i → −∞.

Interestingly, a belief bifurcation should lead to an action bifurcation at the subsequent reflexion
ranks. This fact can also be demonstrated from the optimal SCV formula (8) and the equilibrium
action (9b).

If Sr
i → ∞, at the next reflexion rank (r + 1), we consider the situation from the environment’s

viewpoint (i.e., as σ → ∞); from (8) it follows that Sr+1
j → 0. Returning to player i at rank (r + 2),

for which σ → 0, from (8) we also obtain limσ→0 s
r+2
i = n−1

u−σ+1 < 0 since u < −2 by (6c). Con-

sequently, Sr+2
i → −1 as σ → σ00 = u+ 1, and when preserving the environment’s responses by

the type Sr+1
j → 0, formula (9b) implies Q∗

1 → ∞ (γ = 1 and Q∗
1 = D γ2−2γ+1

γ1(γ2−1)−2(γ−1) ). Thus, the

SCV-defined mental response bifurcation leads to an equilibrium bifurcation in the game. These
considerations are illustrated in Fig. 1 (the lower part).

The case of identical players is the basis for comparatively analyzing the impact of the types of
demand and cost functions on the SCV value. According to (8a), the bifurcation point σ0 shifts
upwards when increasing the nonlinearity coefficients u of the environment players and behaves
oppositely when decreasing u decreases. In other words, a bifurcation state occurs under higher
values of the environment’s SCV value. Due to conditions (8b), if the nonlinearity coefficients
are larger, the environment’s SCV value should be larger so that Sr

i belongs to the corresponding
ranges.
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718 GERASKIN

Let us characterize the dependence of the SCV value of player i on the nonlinearity coefficient ul
of some environment player l as well as on the environment’s SCV value and q,Q.

Proposition 4. The SCV value Sr
i of player i at a reflexion rank r has the following properties:

i) goes down when increasing the nonlinearity coefficient ul of environment player l and up when
increasing Sr−1 :

S
r/
iul < 0, S

r/
iSr−1 > 0; (10a)

ii) in the case of the linear demand function, is independent of q under the linear and quadratic
cost functions of the environment, goes down (up) when increasing q for β > 1 (for β < 1, respec-
tively) under the power cost functions of the environment, and is independent of Q under any cost
functions of the environment:

S
r/
i q

∣∣∣∣
k=1
m=1,3

= S
r/
i Q

∣∣∣∣
k=1
m=1,2,3

= 0, S
r/
i q

∣∣∣∣
k=1
m=2

{
< 0 for β > 1,

> 0 for β < 1;
(10b)

iii) in the case of the power demand function, goes down (up) when increasing q if Sr−1 > −1
(if Sr−1 < −1, respectively) under the linear and quadratic cost functions of the environment, down
if Sr−1 > −1 under the convex power cost functions (β > 1) and under the concave power cost
functions (β < 1) provided that ϕ < 1, and up (down) if Sr−1 < −1 under the concave power cost
functions (under the convex power cost functions provided that ϕ < −1, respectively);

goes up (down) when increasing Q if Sr−1 > −1 (if Sr−1 < −1, respectively) under the linear cost
functions and the quadratic cost functions (in the latter case, goes down provided that ζ < 1), up
(down) if Sr−1 > −1 under the convex power cost functions (β > 1) (under the concave power cost
functions (β < 1) provided that ϕ < 1, respectively), and down (up) if Sr−1 < −1 under the concave
power cost functions (under the convex power cost functions provided that ψ > −1, respectively):

S
r/
i q

∣∣∣∣
k=2
m=1,3

{
< 0 for Sr−1 > −1,
> 0 for Sr−1 < −1,

S
r/
i Q

∣∣∣∣
k=2
m=1

{
> 0 for Sr−1 > −1,
< 0 for Sr−1 < −1,

S
r/
i q

∣∣∣∣
k=2
m=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0 if ϕ < 1 for t = 1,
< 0 for t = 2,
> 0 for t = 3,
< 0 if ϕ < −1 for t = 4,

S
r/
i Q

∣∣∣∣
k=2
m=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0 if ψ > 1 for t = 1,
> 0 for t = 2,
< 0 for t = 3,
< 0 if ψ > −1 for t = 4,

S
r/
i Q

∣∣∣∣
k=2
m=3

{
> 0 for Sr−1 > −1,
< 0 if ζ < 1 for Sr−1 < −1;

(10c)

iv) weakly depends on the supply quantities of the players compared to the impact of the envi-
ronment’s SCV value:

S
r/
i q � S

r/
i Sr−1 , (10d)
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where

ϕ =
B1β(1 − β)(2− β)qβ−3

A|α||1 + Sr−1|(1− α)Qα−2
, ψ = ϕ

1− α

2− β
, ζ =

B2Q
2−α

A|α||1 + Sr−1|q ,

and the additional notations are

t = 1 : Sr−1 > −1 ∧ β < 1, t = 2 : Sr−1 > −1 ∧ β > 1,

t = 3 : Sr−1 < −1 ∧ β < 1, t = 4 : Sr−1 < −1 ∧ β > 1.

Now we compare the bifurcation points under different demand and cost functions.

Proposition 5. Under different types of the demand and cost functions of the environment, the
bifurcation point σ0 satisfies the following relations:

σ023 > σ021, (11a)

σ022 > σ021 for β > 1, (11b)

σ021 > σ012 for B1 > B̄1, (11c)

σ021 > σ013 for B2 < B̄2, (11d)

σ012 > σ022 for B1 <
¯̄B1, if β > 1 or for B1 >

¯̄B1 if β < 1, (11e)

σ013 < σ023 for B2 <
¯̄B2, (11f)

σ012 > σ013 ∧ σ022 > σ023 for β > 1 and
B1

B2
>

1

λ
, (11g)

where

B̄1 = b
δ

λ
, B̄2 = bδ, ¯̄B1 =

δ

λ
(χ− b), ¯̄B2 = δ

χb

χ− b
,

δ = (1 + Sr−1)(1− α)
q

Q
, χ = A|α|Qα−1 > 0, λ = β(β − 1)qβ−2.

The corresponding relations for the bifurcation point under the other types of the demand and
cost functions of the environment are presented in the Appendix.

4. FINDINGS

According to Proposition 2, a belief bifurcation occurs for a player when the environment’s SCV
value increases from σ = u+ 2− n− 0 to σ = u+ 2− n+ 0; furthermore, a greater magnitude
of the SCV value is required to destabilize the equilibrium in the case of more players since the
bifurcation point decreases with increasing n.

Proposition 4 reveals the following major factors affecting the player’s SCV value. First, there
is the factor of the market-technological conditions of the game, determined by the nonlinearity
coefficient: the greater the nonlinearity coefficient of the environment players is, the smaller the
SCV value will be (i.e., the greater its magnitude will be). As a rule, the SCV value is negative,
and the growing magnitude of the SCV value indicates enhancing the player’s response. Therefore,
the combinations of the demand and cost functions resulting in higher values of the nonlinearity
coefficient contribute to enhancing the player’s response. In particular, these include games with
quadratic cost functions or power cost functions with the positive scale effect (β < 1), which lead
to greater values of the nonlinearity coefficient compared to the linear cost model regardless of the
demand model; for details, see the Appendix.

Second, symmetric response is observed for the players, i.e., the greater the environment’s SCV
value is, the greater the player’s SCV value will be. This player response consonance, qualitatively
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Fig. 2. The player’s SCV value depending on the environment’s SCV value.

illustrated in Fig. 2, is expressed as a two-step process. If the environment has negative SCV
values, then increasing them (decreasing their magnitudes) is accompanied by a growth in the
positive SCV value of the player (Sr

i → ∞). In economic terms, the player expects expansion of
the environment and, as a result, will reduce the supply quantity to zero according to formula (9b).
Then a bifurcation point occurs, and the process changes in the opposite direction: applying
formula (8) to the environment yields Sr+1

j = n−1
u+2−Sr

i −n and, consequently, Sr+1
j → 0. In other

words, the environment expects the player’s zero reaction. But in response to this situation (Fig. 2),
the player’s SCV value again increases, i.e., Sr+2

j → −1,motivating the player to increase the supply
quantity.

Third, the greatest impact on the player’s SCV value is exerted by the environment’s SPV values
and types of the demand and cost functions. Despite that the player’s SCV value depends on its
supply quantity and the total supply quantity of all players through the nonlinearity coefficients
of the environment (for the nonlinear functions), this impact is negligibly small compared to the
impact of the mental types of the environment conditioned by its leadership levels.

Proposition 5 identifies the following properties of a bifurcation.

The case of the power demand function leads to a greater value of the bifurcation point under the
quadratic cost function (k = 2,m = 3) compared to the linear cost function (k = 2,m = 1) since
the quadratic function models the negative scale effect. Similarly, in the case of the power demand
function, the bifurcation point under the power cost function (k = 2,m = 2) with the negative
scale effect (β > 1) exceeds the corresponding point under the linear cost function (k = 2,m = 1);
the converse situation occurs given the positive scale effect.

Compared to the linear demand function and different cost functions (m = 2, 3), the case of
the power demand function and the linear cost function (k = 2,m = 1) leads to an increase in the
bifurcation point under certain values of the coefficients B1 and B2 :

i) if B̄1 < 0 (i.e., given the positive scale effect for Sr−1 < −1 and the negative scale effect for
Sr−1 > −1) since

B̄1 =
b(1 + Sr−1)(1− α)

β(β − 1)Qqβ−3

{
> 0 if (β > 1 ∧ Sr−1 > −1) ∨ (β < 1 ∧ Sr−1 < −1)

< 0 if (β < 1 ∧ Sr−1 < −1) ∨ (β > 1 ∧ Sr−1 > −1);

and the scale effect as the technological type of players is opposite to the impact of the environment’s
SCV value as the mental type of players;

ii) if B̄1 > 0 and B1 > B̄1, i.e., for a high growth rate of the power function;

iii) if B̄2 > 0, i.e., for Sr−1 > −1 since B̄2 > 0 = b(1 + Sr−1)(1− α) q
Q .
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Compared to the quadratic cost functions (m = 3) with any demand functions (k = 1, 2), the
case of the power cost functions (m = 2) gives the following relations for the bifurcation point:

i) The bifurcation point under the power cost functions is greater if the scale effect is negative
(β > 1), for B2 � B1, since

B1
B2

> 1
λ implies B1β(β − 1)qβ−2 > B2, and β(β − 1)qβ−2 � 1.

ii) The bifurcation point under the power cost functions is smaller if the scale effect is positive
(β < 1) because, in this case, B1β(β − 1)qβ−2 < 0.

The case of the quadratic cost functions (m = 3) with the linear (k = 1) and power (k = 2)
demand functions demonstrates two possibilities in which enhancing the environment’s response
compensates for the nonlinearity impact of the demand function:

i) The bifurcation point under the power cost functions is greater if Sr−1 > −1 and B2 is

sufficiently small (B2 <
¯̄B2) since

¯̄B2 =
b(1+Sr−1)(1−α)A|α|qQα−2

A|α|Qα−1−b
> 0 if A� b.

ii) The bifurcation point under the power cost functions is smaller if Sr−1 > −1( ¯̄B2 < 0).

5. CONCLUSIONS

The market-technological conditions of an oligopoly game are described by a combination of the
market demand function and the players’ cost functions, which together determine their utility func-
tions. Based on the analysis of the variety of such combinations arising in different applied problems
of oligopoly modeling, this study has demonstrated the importance of the market-technological con-
ditions of an oligopoly game for the stability of the game equilibrium. As has been established, the
reason of destabilizing equilibrium, or a bifurcation of the players’ actions, is a bifurcation of their
beliefs: under a definite constellation of the beliefs of environment players, the player can evaluate
their optimal reaction as positive and negative simultaneously. In turn, the specified constellation
of players’ beliefs is predetermined by their Stackelberg leadership levels and expressed by some
SCV value of the environment, which can be called a bifurcation point.

The bifurcation point depends on the number of players and the nonlinearity coefficient of their
utility functions, and the nonlinearity coefficient is determined by the types of the demand and
cost functions. If the bifurcation point is greater for a particular combination of the demand and
cost functions of the players (i.e., the SCV value of the environment has a smaller magnitude), the
game situation will be more sensitive to changes in the mental types of the players. In other words,
the game equilibrium can be easier destabilized in dynamics.

It is characteristic that the equilibrium cannot be destabilized under the linear demand and cost
functions. Therefore, gradual changes of the equilibrium actions will be observed in real oligopoly
games with the linear dependencies of the market-technological parameters, a phenomenon often
encountered in practice.

APPENDIX

Proof of Proposition 1. The parameter ui in [6] is the component of the second-order condition

for the optimum of the player’s utility function2, i.e., Π
//
iQiQi

= ui − Sr−1
i < 0. Based on (1), we

write this condition as P
/
Qi

+ (1 + Sr−1
i )P

/
Q + (1 + Sr−1

i )QiP
//
QQi

− C
//
iQiQi

< 0; in view of P
/
Q < 0,

this inequality can be divided by |P /
Q| :

P
/
Qi

|P /
Q
|
− 1−Sr−1

i +
(1+Sr−1

i )QiP
//
QQi

|P /
Q
|

−
C

//
iQiQi

|P /
Q
|
< 0, which finally

yields (2a).

2 In [6], this parameter has the form ui = −2−
C

//
iQiQi

b
since it was derived under the linear demand function, for

which P
/
Q = P

/
Qi

= −b.
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Proof of Proposition 3. Given (3a) and (4c), equations (1) take the form

a− bQ− b(1 + Sr
i )Qi −B2iQi −B1i = 0,

or
γiQi +

∑
j=N\i

Qjq−i = Di, i ∈ N ;

solving this system by Cramer’s rule gives (9).

Proof of Proposition 4. By denoting zr−1
j = 1

uj−Sr−1
j +1

and differentiating the expression (7), we

obtain

S
r/
i ul

=

(
1

Sr
i

− 1

)
(sri )

−2
(
zr−1
j

)/
ul

= − (1− sri )
−2

(
ul − Sr−1

l + 1
)−2

< 0, (A.1)

S
r/
i q = S

r/
i ul

u
/
l q, S

r/
i Q = S

r/
i ul

u
/
l Q, S

r/
i Sr−1 > 0, S

r/
i ul

< 0. (A.2)

To simplify the analysis of formulas (6), let us introduce the notations

δ = (1 + Sr−1)(1 − α)
q

Q

{
> 0 for Sr−1 > −1

< 0 for Sr−1 < −1,
χ = A|α|Qα−1 > 0, (A.3)

λ = β(β − 1)qβ−2

{
< 0 for β < 1

> 0 for β > 1.

In addition, with the compact notations x, y, z,X, Y, and Z for ukm, k = 1, 2,m = 1, 2, 3, formu-
las (6) reduce to

x = u11 = −2, X = u21 = −2 + δ, (A.4a)

y = u12 = −2− B1

b
λ, Y = u22 = −2 + δ − B1

χ
λ, (A.4b)

z = u13 = −2− B2

b
, Z = u23 = −2 + δ − B2

χ
. (A.4c)

Analysis of (A.3) and (A.4) shows the existence of four possible cases depending on the values
of the parameters β and Sr−1, further indicated by the symbol t: 1) t = 1 : Sr−1 > −1 ∧ β < 1; in
this case, δ > 0 ∧ λ < 0; 2) t = 2 : Sr−1 > −1 ∧ β > 1; in this case, δ > 0 ∧ λ > 0; 3) t = 3 : Sr−1 <
−1 ∧ β < 1; in this case, δ < 0 ∧ λ < 0; 4) t = 4 : Sr−1 < −1 ∧ β > 1; in this case, δ < 0 ∧ λ > 0.

Differentiating (A.4) yields

x/q = z/q = 0, X/
q = Z/

q =
δ

q
,

y/q = −B1λ

bq
(β − 2), Y /

q =
δ

q
− B1λ

χq
(β − 2),

(A.5)

x
/
Q = y

/
Q = z

/
Q = 0, X

/
Q = − δ

Q
,

Y /
q = − δ

Q
− B1λ

χq
(β − 2), Z

/
Q = − δ

Q
− B2

χQ
(1− α).

(A.6)
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Due to (A.2) and (A.3), from these formulas we obtain the following results:

1) under the linear demand function (k = 1),

S
r/
i q

∣∣∣∣
k=1
m=1,3

= S
r/
i Q

∣∣∣∣
k=1
m=1,3

= 0, S
r/
i q

∣∣∣∣
k=1
m=2

{
< 0 for β > 1
> 0 for β < 1,

2) under the power demand function (k = 2), Y
/
q > 0, i.e., due to (A.1), S

r/
i q

∣∣∣∣
k=2
m=2

< 0 if

δ + B1λ
χ (2− β) > 0; this inequality leads to the four possible cases: for t = 1, the inequality

1 > −B1λ
χδ (2− β) is valid, and the substitution of (A.3) gives 1 > ϕ = B1β(1−β)(2−β)qβ−3

A|α||1+Sr−1|(1−α)Qα−2 ; for

t = 2, the inequality is the same and ϕ < 0, i.e., Y
/
q > 0 without additional conditions; for t = 3,

we have δ + B1λ
χ (2− β) < 0, and consequently, Y

/
q < 0; for t = 4, Y

/
q > 0 if ϕ < −1; the derivatives

Y
/
Q > 0 and Z

/
Q > 0 are considered by analogy.

Let us compare S
r/
i Sr−1 and S

r/
i q by magnitude, observing that

S
r/
i Sr−1 = (1− sri )

−2(ul − Sr−1
l + 1)−2, S

r/
i q = (1− sri )

−2(ul − Sr−1
l + 1)−2u

/
l q.

From (A.5) it follows that

u
/
11q = u

/
13q = 0, u

/
21q = u

/
23q = (1 + Sr−1)(1 − α)

1

Q
,

u
/
12q =

B1

b
(β − 2)β(β − 1)qβ−3,

u
/
22q = (1 + Sr−1)(1− α)

1

Q
− B1

A|α|Qα−1
(β − 2)β(β − 1)qβ−3.

Obviously, limq→∞ u
/
l q → 0, and therefore, S

r/
i q � S

r/
i Sr−1 .

Proof of Proposition 5. For the linear and quadratic cost functions with any parameter values,
we have the relations

x > z, X > Z.

In the other cases, the nonlinearity coefficients satisfy the following relations: x < X for Sr−1 > −1;

x < y for β < 1; x < Y for B1 <
¯̄̄
B1; x < Z for B2 <

¯̄̄
B2; X < Y for β > 1; X < y for B1 > B̄1;

X < z for B2 < B̄2; y < Y for B1 <
¯̄B1 if β > 1, or for B1 >

¯̄B1 if β < 1; z < Z for B2 <
¯̄B2; y < z

for β > 1 and B1
B2

> 1
λ ; Y < Z for β > 1 and B1

B2
> 1

λ ; Y < Z for β > 1 and B1
B2

> 1
λ , where

¯̄̄
B1 = δχλ ,

B̄1 = b δλ ,
¯̄̄
B2 = δχ, B̄2 = bδ, ¯̄B1 =

δ
λ(χ− b), and ¯̄B2 = δ χb

χ−b . Due to (10a), greater values of ukm
lead to smaller values of Sr

ikm. Therefore, these relations yield the desired inequalities for σ0km.
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